Extended Capabilities in JPEG-2000

Christopher M. Brislawn
Los Alamos National Laboratory

LANL JPEG-2000 Team:

Sue Mniszewski, Michelle Pal, Allon Percus, Reid Rivenburgh, Brendt Wohlberg

home page: http://wwwc3.lanl.gov/~brislawn

NIMA Image Compression Symposium, May 2002

Abstract

We present an overview of some of the extended capabilities the ISO JPEG-2000 digital image coding standard provides and illustrate potential applications of these capabilities to US government needs, focusing on scientific data-management applications related to DOE core missions. Examples are provided that quantify the effect of JPEG-2000 compression on end-use exploitation of hyperspectral remotesensing imagery. Results indicate that, for many hyperspectral image classification tasks, it is possible to obtain better than 99% classification accuracy while using less than 1% of the hyperspectral image data, provided the data is compressed using an appropriate JPEG-2000 compression profile.

Advanced Capabilities for Advanced Applications

Los Alamos National Lab is actively participating in the development of JPEG-2000 extensions for advanced applications that support DOE missions.

- **Extended capabilities currently under development:**
 - **※** Part 8: Image security features
 - **❖** Part 9: Interactive client-server protocol
 - **❖ Part 10: 3-dimensional (volumetric) data and floating point data**
- | Potential DOE/LANL applications:
 - * Experimental physics imagery
 - Diagnostic imagery (x-ray and tomographic)
 - * Remote sensing and multispectral data
 - * Time series imagery
 - Computer modeling and simulation output
 - Digital libraries and databases

Region-Of-Interest Coding on Volumetric Imagery

- False-color visualization for tomographic imagery of simulated high explosives
- Original image (16 bits/sample) with highlighted ROI (L); reconstructed at 0.05 bit/sample (M), reconstructed at 0.5 bit/sample (R)

Computational Fluid Dynamics Data: Simulated Rayleigh-Taylor Instability

Original vorticity field, 16 bits/sample

JPEG-2000, 1.0 bit/sample

Los Alamos National Laboratory

Computer & Computational Sciences, CCS-3

Interactive Browsing Applications

Browse tools will use Part 9 client-server protocol

Interactive Browsing (continued)

Progressive transmission capabilities serve up desired resolution to user

Remote Sensing: Hyperspectral Imagery

- Examples using NASA AVIRIS imagery: Airborne Visible InfraRed Imaging Spectrometer.
 - *** 224 spectral components (bands)**
 - * 140 MB per image cube

AVIRIS "Jasper Ridge" Image Cube with Region-of-Interest Coding

- (L) Original 16-bit image with highlighted ROI.
- (R) Partially reconstructed image decoded at 0.5 bits/pixel/band.

Hyperspectral Data Classification Example: Spectral Angle Mapping

Example of a typical remote-sensing image exploitation task: classify all pixels with spectral characteristics similar to asphalt

Performance of Spectral Angle Classification on Compressed/Reconstructed Data

- Report % correctly classified pixels as function of compressed bit rate.
- With appropriate profile, we get >99% accuracy with <1% of the data.

Example of Unsupervised Hyperspectral Data Classification: K-Means Clustering

- Classification of the uncompressed image
- Classification of the compressed/reconstructed image at 0.125 bits/pixel/band

Performance of K-Means Classification on Compressed/Reconstructed Data

As before, with an appropriate JPEG-2000 compression profile, we get >99% classification accuracy with <1% of the data.

